If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8t^2-9t-950=0
a = 8; b = -9; c = -950;
Δ = b2-4ac
Δ = -92-4·8·(-950)
Δ = 30481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{30481}}{2*8}=\frac{9-\sqrt{30481}}{16} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{30481}}{2*8}=\frac{9+\sqrt{30481}}{16} $
| -8t^2-9t-950=0 | | 7.25c=5 | | 1/3y+1/6=2/5y-7/10 | | 0.5x+20=0.8x+40 | | y=(-3*1)+5 | | y=(-31)+5 | | y=(-3,1)+5 | | y=(-3,0)+5 | | d/2-3=5 | | x^2-5x+1.25=0 | | q÷3=2 | | y=(-2-5) | | y=(0-5) | | 6=q-78 | | y=(-1-5) | | 5x3-20x=0 | | -4(y+2)=4y-8+2(2y+8) | | -5y-4=-2(y-4) | | 8(v+2)=-5v+42 | | -37=5x-2 | | 3/7(2x-3)=9 | | 5(x-4)-6=-3(-7x+8)-2x | | -2(u+5)=-7u+35 | | -4y+48=8(y-3) | | -5=4u+3 | | 5w/2=20 | | -7m+4m+10m=15-2m | | 3x2=7 | | P=1/4q^2+30 | | 7/8u=4 | | v/3-9=7 | | 30=5x+8 |